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Abstract To increase our capability to predict Arctic sea ice and climate, we have developed a coupled
atmosphere‐sea ice‐ocean model configured for the pan‐Arctic with sufficient flexibility. The Los Alamos
Sea Ice Model is coupled with the Weather Research and Forecasting Model and the Regional Ocean
Modeling System in the Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport modeling system. It is well
known that dynamic models used to predict Arctic sea ice at short‐term periods strongly depend on
model initial conditions. Parallel Data Assimilation Framework is implemented into the new modeling
system to assimilate sea ice observations and generate skillful model initialization, which aid in the
prediction procedures. The Special Sensor Microwave Imager/Sounder sea ice concentration, the CyroSat‐2,
and Soil Moisture and Ocean Salinity sea ice thickness are assimilated with the localized error subspace
transform ensemble Kalman filter. We conduct Arctic sea ice prediction for the melting seasons of 2017 and
2018. Predictions with improved initial sea ice conditions show reasonable sea ice evolution and small
biases in the minimum sea ice extent, although the ice refreezing is delayed. Our prediction experiments
suggest that the use of appropriate uncertainty for the observed sea ice thickness can lead to improved spatial
distribution of the initial ice thickness and thus the predicted sea ice distribution. Our new modeling
system initialized by the output of the National Centers for Environmental Prediction Climate Forecast
System seasonal forecasts with data assimilation can significantly increase the sea ice prediction skills in sea
ice extent for the entire Arctic as well as in the Northern Sea Route compared with the predictions by the
National Centers for Environmental Prediction Climate Forecast System.

Plain Language Summary We have developed a coupled atmosphere‐sea ice‐ocean model
configured for the Arctic to enhance our capability to predict Arctic sea ice and climate. It is well known
that the accuracy of model initial condition strongly influences Arctic sea ice predictions with dynamic
models at short‐term periods. A data assimilation system is combined with the new coupled model to
assimilate satellite sea ice observations to improve initial sea ice conditions. We perform Arctic sea ice
predictions using the new modeling system for the summers of 2017 and 2018. Predictions show good
predictive skills compared with the observations. Our prediction experiments also suggest that the use of
appropriate uncertainty in observed sea ice thickness can improve the predicted sea ice spatial pattern.
Our new modeling system initialized by the seasonal forecasts of the National Centers for Environmental
Prediction Climate Forecast System and our data assimilation procedures performmuch better in predicting
Arctic sea ice cover as well as sea ice conditions in the Arctic shipping routes than the National Centers
for Environmental Prediction Climate Forecast System.

1. Introduction

Associated with global climate change, the properties of Arctic sea ice have undergone a dramatic change
over the past few decades. Arctic sea ice extent/area has been decreasing since the satellite era. The decreas-
ing trend in areal extent is found for every month (e.g., Cavalieri & Parkinson, 2012; Liu et al., 2019).
Meanwhile, the thickness of the ice pack has been thinning (e.g., Kwok & Cunningham, 2015; Kwok &
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Rothrock, 2009; Kwok & Untersteiner, 2011), largely due to the thicker multiyear sea ice being replaced by
the thinner first year sea ice (e.g., Maslanik et al., 2007, 2011; Tschudi et al., 2016).

The rapid changes in the properties of Arctic sea ice have brought challenges to an increasing demand for
skillful Arctic sea ice predictions, particularly at a seasonal timescale (e.g., Jung et al., 2013; Stroeve
et al., 2014). Figure 1 gives the predicted September sea ice extent based on the July Sea Ice Outlook from
2008 to 2018, a community effort managed by the Sea Ice Prediction Network (https://www.arcus.org/sipn).
Here we only show the prediction from a range of dynamical models participating in Sea Ice Prediction
Network, including sea ice‐ocean coupled models forced by prescribed atmospheric forcings from numerical
weather predictions and fully coupled (including atmosphere, sea ice, ocean, and land) regional and global
modeling systems. It appears that the median of the predicted September sea ice extent shows substantially
differences compared to the observations for most years. Thus, more efforts are needed to improve the pre-
diction capability for Arctic sea ice and the climate system at a seasonal timescale.

Many models have been used for Arctic research. For example, The Arctic Regional Climate Model
Intercomparison Project (ARCMIP, Curry & Lynch, 2002) evaluated the performance of atmospheric mod-
els. Studies that compared ARCMIP models with Surface Heat Budget of the Arctic Ocean observations
(Uttal et al., 2002) showed that there was a large disagreement between ARCMIP models and observations
in surface radiation fluxes, which is mainly the result of errors in cloud cover and vertical cloud distribution
(e.g., Inoue et al., 2006; Rinke et al., 2006; Tjernstrőm et al., 2008; Wyser et al., 2008). More realistic physical
parameterizations are needed to reproduce reasonable results. The Arctic Ocean Model Intercomparison
Project (Proshutinsky et al., 2001) assessed the performance of ocean models. Studies have reported that
Arctic Ocean Model Intercomparison Project models showed large differences in temperature, salinity,
and circulations as compared to observations (e.g., Holloway et al., 2007; Proshutinsky et al., 2011). The
Sea Ice Model Intercomparison Project (Notz et al., 2016) has been endorsed as a diagnostic MIP for
CMIP6, which will analyze heat, momentum, and mass budgets that govern the evolution of sea ice. Sea
IceModel Intercomparison Project will allow researchers to understand the role of internal variability, exter-
nal forcing, model tuning, and the formulation of sea ice models for improving the fidelity in simulating and
predicting sea ice.

It is well known that the performance of dynamic models to predict Arctic sea ice at short‐term periods
strongly depends onmodel initial conditions (e.g., Blanchard‐Wrigglesworth et al., 2011; Msadek et al., 2014;
Liu et al., 2019; Yang et al., 2016). The accurate sea ice initialization requires not only sea ice concentration
but also variables (e.g., sea ice thickness) that influence surface energy fluxes and ocean‐atmosphere inter-
actions (Yang et al., 2016). Thus, a data assimilation method is needed to incorporate sea ice observations to

Figure 1. The median (blue line) and interquartile range (blue shaded) of the predicted September sea ice extent based on July Sea Ice Outlook by dynamical
models participating in the Sea Ice Prediction Network. The observed September sea ice extent is shown in red dots. Y axis: Left is September sea ice extent
and right is the number of dynamical models.
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produce skillful model initializations, leading to improved Arctic sea ice prediction. Several studies have
explored assimilating observed sea ice concentration into coupled sea ice‐ocean models. For example,
Lisæter et al. (2003) used an ensemble Kalman filter (KF) to assimilate Special Sensor Microwave/Imager
ice concentration, while Lindsay and Zhang (2006) employed a nudging scheme. Stark et al. (2008) used
an optimal interpolation method to assimilate the Special Sensor Microwave/Imager ice concentration as
well as sea ice drift data. Tietsche et al. (2013) assimilated ice concentration with a simple Newtonian relaxa-
tion scheme and updated the sea ice thickness analysis using a proportional dependence between the ice
concentration and mean ice thickness in a coupled climate model. These studies suggested that the
assimilation of observed ice concentration in the models improves the simulated sea ice cover but minor
improvements for the sea ice thickness.

At a seasonal timescale, the initialization of sea ice thickness has been shown to be critical for summer pre-
diction (e.g., Day, Hawkins, et al., 2014; Day, Tietsche, et al., 2014). Some studies (e.g.,
Blanchard‐Wrigglesworth et al., 2011; Koenigk & Mikolajewicz, 2009) showed that the persistence of sea
ice thickness anomalies is much longer than that of sea ice concentration. Higher predictability of Arctic
sea ice thickness (volume) with respect to that of Arctic sea ice cover has been found at longer time scales
(e.g., Guemas et al., 2014). Stroeve et al. (2014) suggested that the quality of initial states and the initializa-
tion methods that the modeling groups utilize are the key to close the gap between the operational skill and
theoretical predictability. Recent studies have shown that assimilating observed sea ice thickness and/or ice
concentration can lead to significantly reduced biases in predicted sea ice extent and thickness based on the
simulation in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (Chen
et al., 2017; Collow et al., 2015). Benefiting from both the CryoSat‐2 and Soil Moisture and Ocean Salinity
(SMOS) satellite‐derived sea ice thickness products, more recent studies have shown the improvements on
short‐term ice predictions as well as the ice volume estimation by assimilating CyroSat‐2 and/or SMOS
together with satellite‐derived sea ice concentration (Blockley & Peterson, 2018; Mu, Yang, et al., 2018,
Mu, Losch, et al., 2018; Xie et al., 2018).

In this study, we have developed a new coupled modeling system configured for the Arctic that can be used
for improving predictive capability of Arctic sea ice and the climate system at a seasonal time scale, as well as
resolving and understanding important processes and feedbacks in the Arctic. The goal of the new coupled
modeling system is sufficient flexibility. Sufficient flexibility means that each model component of the mod-
eling system has different physics options for us to choose (see section 2 for details). For improving the accu-
racy of initial conditions, we have incorporated a newly developed ensemble KF into the new coupled
modeling system. We use this filter to assimilate not only satellite‐based sea ice concentration but also
recently produced and validated satellite‐based sea ice thickness, which provides improved sea ice initial
conditions for the model (see section 3 for details).

2. Model

As mentioned above, we have developed a new coupled modeling system configured for the Arctic with suf-
ficient flexibility. Specifically, the Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport (COAWST) mod-
eling system (Warner et al., 2010, 2008) is employed here as the base framework for our regional coupled
modeling system. The COAWST modeling system includes three model components: the Weather
Research and Forecasting Model (WRF), the Regional Ocean Modeling System (ROMS), and the
Simulating Waves Nearshore. The COAWST is designed and used to better understand significant processes
affecting our coastlines and how those processes create coastal changes (Warner et al., 2010).

For Arctic sea ice prediction at a seasonal time scale, we couple the Los Alamos sea ice model (CICE) with
the WRF model and the ROMS model using the Model Coupling Toolkit in the COAWST modeling system.
More details about each model component are described below.

2.1. Atmospheric Model Component

The atmospheric model component in the COAWST modeling system is the Advanced Research Weather
Research and Forecasting model (ARW, Skamarock et al., 2005). The ARW model is a nonhydrostatic and
quasi‐compressible model, which uses the Arakawa C‐grid in horizontal and sigma‐pressure vertical coordi-
nate in vertical with the top of the model at 50 mb. The ARW model includes recent advances in physics

10.1029/2019MS001938Journal of Advances in Modeling Earth Systems

YANG ET AL. 3 of 25



parameterizations, that is, P3 microphysics scheme (Morrison & Milbrandt, 2015) and KSAS cumulus
scheme (Kwon & Hong, 2017). The WRF model has been widely used in operational weather forecast and
atmospheric research (e.g., Bromwich et al., 2009; Done et al., 2004; Hines & Bromwich, 2008; Hines
et al., 2011; Liu et al., 2016).

2.2. Oceanic Model Component

The COAWST modeling system uses the ROMS as the ocean model component. The ROMS model is a
free‐surface and terrain‐following model, which solves three‐dimensional Reynolds‐averaged
Navier‐Stokes equations with the hydrostatic and Boussinesq approximation (Haidvogel et al., 2008;
Shchepetkin & McWilliams, 2005). In the horizontal, the ROMS model uses boundary‐fitted, orthogonal
curvilinear coordinates on a staggered Arakawa C‐grid. In the vertical, the equations are discretized
over bottom topography with stretching terrain‐following coordinates (Song & Haidvogel, 1994). Like
the WRF model, the ROMS model provides various options for advection schemes (momentum and tra-
cer), vertical mixing, subgrid‐scale parameterizations, and open boundary conditions. The ROMS model
has been used in a dives range of applications (e.g., Capet et al., 2008; Fennel et al., 2006;
Siegel et al., 2008).

2.3. Sea Ice Model Component

The ROMS model provides a simple sea ice module, which combines the elastic‐viscous‐plastic rheology
(Hunke & Dukowicz, 1997) and a simple one‐layer ice and snow thermodynamics (Mellor &
Kantha, 1989). Here, the Los Alamos sea ice model (CICE) version 5.1.2 is chosen to be coupled with the
WRF model and the ROMS model within the COAWST modeling system. The CICE model is designed to
be a sea ice component for global coupled climate models. Its dynamic part simulates the movement of
sea ice based on the material strength of the ice and forces from the atmosphere, the ocean, and Earth's rota-
tion; its thermodynamic part simulates the growth rate of snow and ice as a result of vertical conductive,
radiative, and turbulent fluxes; and its transport part computes the advection of sea ice concentration and
volume as well as other state variables. The CICEmodel also simulates the evolution of the ice thickness dis-
tribution (ITD, Thorndike et al., 1975) in time and space since the dynamic and thermodynamic properties
of the ice pack are related to how much ice lies in each thickness range. More details can be found in the
CICE documentation (Hunke et al., 2015).

The choices of physics in theWRF, ROMS, and CICEmodels determine the behavior of the simulated atmo-
spheric (i.e., winds, radiation, temperature, humidity, and precipitation), oceanic (i.e., currents, tempera-
ture, and salinity), and sea ice (i.e., velocity, ice concentration, ice thickness, and melt pond distribution)
variables that have profound influences on simulating sea ice conditions in the Arctic. Thus, a series of sen-
sitivity experiments with different physics options have been performed to determine the “optimal” physics
configuration that provides reasonable simulation of Arctic sea ice, serving as the baseline.

3. Assimilation Procedure

In this study, the Parallel Data Assimilation Framework (PDAF, Nerger &Hiller, 2013), an open‐source soft-
ware for ensemble data assimilation, is implemented into the new coupled modeling system described in
section 2. The advantages of PDAF are as follows: (1) PDAF simplifies the implementation of the data assim-
ilation systemwith numerical models and provides a standardized interface that makes the assimilation rou-
tines independent from the numerical models and (2) PDAF provides a variety of optimized data
assimilation algorithms, in particular ensemble‐based KFs. The KF (Kalman, 1960; Kalman & Bucy, 1961)
can be mathematically expressed as follows.

xat ¼ x f
t þ Kt yt–Htx

f
t

h i

Pa
t ¼ I–KtHtð ÞP f

t

Kt ¼ P f
t H

T
t HtP

f
t H

T
t þ Rt

� �
–1

Here xf and xa are the forecast and analysis state vectors. Pf and Pa are the model forecast and analysis error
covariance matrices. K is the Kalman gain. y and R are the observation vector and its error covariance
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matrix. H is the forward operator, performing the mapping from model space to observation space. A fore-
cast modelM is applied to transport the state vector and the model error covariance matrix, with the covar-
iance of forecast model error Q, to the next analysis time step:

x f
tþ1 ¼ Mxat

P f
tþ1 ¼ MPf

t M
T þ Qt

In contrast to the KF that works with the full distribution of the state explicitly, the ensemble Kalman filter
(Evensen, 1994), a flow‐dependent data assimilation method, was proposed, which combines the KF with a
sequential Monto Carlo method, and uses an ensemble to approximate the covariance of the background
error. That is, one never needs to compute a full covariance matrix in model state space in the ensemble
Kalman filter approach. In addition, it has an advantage of relative ease of implementation and restoring
the ensembles, retaining the benefit of flow‐dependent error covariance.

Here, a localized error subspace transform ensemble Kalman filter (LESTKF) is utilized to assimilate
satellite‐observed sea ice data. Nerger et al. (2012a) showed that the error subspace transform ensemble
Kalman filter (ESTKF), as a variant of the singular evolutive interpolated Kalman (Pham, 2001) filter,
produces the same ensemble transformation as that of the ensemble transform Kalman filter (ETKF,
Bishop et al., 2001). The ESTKF explicitly projects the ensemble onto the error subspace and computes
the ensemble transformation directly in the error subspace. The ESTKF also provides minimum transfor-
mation of the ensemble members, which performs better than singular evolutive interpolated Kalman,
and has lower computational cost. To minimize sampling errors of the estimated error covariance matrix
because of small ensembles, especially long‐range error covariance matrix, the localization of covariance
matrices is applied. The localized ESTKF conducts a regulated observation localization by the weighting
of elements of the observation‐error covariance matrix with a localization function of variable width
(Nerger et al., 2012b). For smaller observation errors, the regulated observation localization prevents
the broadening of the effective localization length that can degrade the assimilation performance.
Furthermore, its extra computational cost is insignificant compared with the total cost (see details in
Nerger et al., 2012b).

Our assimilation procedure includes two steps: initialization and analysis. Using the prediction in this study
that starts on 1 July 2017 as an example, for the initialization step, we follow the ensemble‐generating
method proposed by Pham (2001) to perform 1 month of simulation with the newmodeling system (starting
on 15 June and on 15 July), which is initialized by the NCEP 9‐month operational forecasts starting on 15
June. The daily simulated state vectors of sea ice concentration and thickness are stored sequentially to form
the trajectory of sea ice states. The second‐order exact sampling is then applied to the singular vectors and
values, which are computed by performing the singular value decomposition on the trajectory of sea ice
states, to generate eight ensemble perturbations overlaid on the mean state of trajectories. Once we have
the initial ensembles that provide an estimate of initial model states and the model uncertainties, the analy-
sis step with the LESTKF is conducted to assimilate satellite‐based sea ice concentration and thickness with
their observational uncertainties into the initial sea ice conditions (see section 4.1). As described above, the
CICE model uses categories to describe the ITD evolution, and thus, a method to distribute the assimilated
sea ice concentration and thickness to the ITD space is required. First, the assimilated sea ice concentration
and thickness are treated as the mean value of grid cells. Second, we employ the module in the CICE model
to distribute the initial mean value to each ice thickness category using a distribution function, P:

Pi ¼ max 2 h¯Hi −Hi
20ð Þ

Σ max 2 h¯Hi −Hi
20ð Þ; i ¼ 1; NAi ¼ A¯Pi

Vi ¼ A¯HiPi

whereAandhare the assimilated sea ice concentration and thickness,Hi is the prescribed ice thickness cate-
gory (0–0.3, 0.3–0.7, 0.7–1.2, 1.2–2.0, and 2.0 m~),N is the number of ice thickness category (hereN= 5), and
Ai and Vi are the ice concentration and volume of each ice thickness category.
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4. Data
4.1. Initialized and Assimilated Data

The Climate Forecast System version 2 (CFSv2, Saha et al., 2014) 9‐month operational forecast is obtained
from the NCEP (http://nomads.ncep.noaa.gov/pub/data/nccf/com/cfs/prod/). The CFSv2 forecast provides
all variables with a spatial resolution of 1° for initializing all model components of our newmodeling system.

We assimilate two satellite‐observed sea ice variables (sea ice concentration and thickness) to generate
improved estimation of initial sea ice conditions. The near real‐time daily Arctic sea ice concentration is
obtained from the National Snow and Ice Data Center (NSIDC), which is derived from the Special Sensor
Microwave Imager/Sounder (SSMIS), processed by the the National Aeronautics and Space
Administration Team algorithm (Maslanik & Stroeve, 1999). The data are on the NSIDC polar stereographic
grid with a spatial resolution of 25 km. The uncertainty of near real‐time SSMIS sea ice concentration is
~10–15% (Tonboe & Nielsen, 2010), and 15% is used as the observational error in sea ice concentration.

One of the most significant biases in the NCEP CFSv2 simulation is sea ice being too thick over most of the
Arctic basin with interannual variability that is too weak (Saha et al., 2014). Two satellite‐derived sea ice
thickness products are employed here. The first product is the monthly sea ice thickness derived from the
CryoSat‐2 (Laxon et al., 2013), a satellite of the European Space Agency. The CryoSat‐2 sea ice thickness
(http://data.seaiceportal.de) is on the EASE Grid (Brodzik et al., 2012) with a spatial resolution of 25 km.
The uncertainty of CryoSat‐2 ice thickness comes from two sources, the freeboard‐to‐thickness (~0.3 m)
and its system uncertainty (~0.6–1.2 m) (Ricker et al., 2014). The CryoSat‐2‐derived sea ice thickness is more
accurate for the central Arctic ice pack. It is also possible for thin ice measurement but with less robustness
(Sallila et al., 2019). The second product is the daily sea ice thickness derived from the SMOS brightness tem-
perature measured by the Microwave Imaging Radiometer using Aperture Synthesis using a single‐layer
emissivity model (Kaleschke et al., 2012; Tian‐Kunze et al., 2014; https://icdc.cen.uni‐hamburg.de/
thredds/catalog/ftpthredds/smos_sea_ice_thickness/catalog.html). The SMOS sea ice thickness is on the
NSIDC polar stereographic grid with a spatial resolution of 12.5 km. The SMOS ice thickness has small
uncertainty (~0.7 m) for thin ice (<1 m) but large underestimation for thick ice because of the saturation
of SMOS brightness temperature with thickness (Kaleschke et al., 2012; Tian‐Kunze et al., 2014). In order
to take advantage of the complementary feature of CryoSat‐2 and SMOS, we use a simple approach to merge
the two ice thickness products. Sea ice with thickness less than 1 m in the CryoSat‐2 ice thickness is replaced
by SMOS ice thickness. The 1.5 m is used here to represent the observational error in the CryoSat‐2/SMOS
merged sea ice thickness, which is the largest uncertainty of CryoSat‐2.

In this study, we only consider the assimilation of satellite‐based sea ice concentration and thickness. The
variables of the atmosphere and the ocean are initialized by the CFSv2 operational forecasts (see section
4.1) without assimilating additional observations for two reasons. First, our focus is the impacts of assimila-
tion of key sea ice variables on Arctic sea ice prediction. Second, the CFSv2 data that are used as the initial
and boundary conditions for our modeling system has assimilated the variables of the atmosphere and ocean
(Saha et al., 2010).

4.2. Evaluation Data

In a fully coupled model, sea ice strongly interacts with both the atmosphere above and the ocean below. In
this study, we also assess the simulation of the WRF model and the ROMS model in the new coupled pre-
dictive model. For the evaluation of the WRF model, the ERA‐Interim Re‐Analysis (Dee et al., 2011) is cho-
sen. Lindsay et al. (2014) suggested that ERA‐Interim has the better performance in the Arctic than other
global reanalysis. For the evaluation of the ROMS model, the National Oceanic and Atmospheric
Administration (NOAA) Optimum Interpolation Sea Surface Temperature (SST) version 2 (obtained from
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, http://www.esrl.noaa.gov/psd/) with a spatial resolution
of 0.25° is utilized.

5. Methods
5.1. Model Configurations and Experiment Designs

Currently, seasonal Arctic sea ice prediction typically starts from 1 June, 1 July, and 1 August (see Sea Ice
Prediction Network for details, https://www.arcus.org/sipn). In this study, numerical experiments for the
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Pan‐Arctic seasonal sea ice prediction have been conducted, starting from
1 July and 1 August to 1 October for the year of 2017 and 2018, respec-
tively. The model domain includes 319 (449) x‐ (y‐) grid points with an
~25‐km grid spacing for all model components (WRF, ROMS, and
CICE, Figure 2). The WRF model uses 50 vertical levels, the ROMS model
uses 40 vertical levels, and the CICE model uses 7 ice layers, 1 snow layer,
and 5 categories of sea ice thickness. The coupling frequency across all
model components is 30 min. Detailed options of physical parameteriza-
tions and model settings for the WRF, ROMS, and CICE models are sum-
marized in Table 1. Initial and boundary conditions for the WRF and
ROMS models are from the CFSv2 9‐month operational forecasts. Sea
ice initial conditions are generated from the assimilation method
mentioned in section 3. Ensemble forecasts with eight members
are conducted.

Table 2 provides Arctic sea ice prediction experiments conducted in this
study. These numerical experiments allow us to examine impacts of the
assimilation of satellite‐based sea ice concentration and thickness on sea-
sonal sea ice prediction, including different approaches to generate initial
sea ice conditions and different observational errors of sea ice thickness.

5.2. Melting Season Sea Ice Thickness

Sea ice thickness derived from CryoSat‐2 and SMOS as mentioned in
section 4.1 is not available during the melting season (only available until
15 April). This is primarily due to that sea ice is highly inhomogeneous
during the melting season (i.e., a footprint of SMOS can be a mixture of
wet snow/sea ice, melt ponds, and open water, Huntemann et al., 2014).
Thus, we need an approach to extrapolate the CryoSat‐2/SMOS merged
ice thickness to the above specific dates (i.e., 1 July and 1 August). Here
the Pan‐Arctic Ice Ocean Modeling and Assimilation System (PIOMAS)

daily sea ice thickness data (Zhang & Rothrock, 2003; http://psc.apl.uw.edu/research/projects/arctic‐sea‐-
ice‐volume‐anomaly/data/) are used for this purpose. Previous studies (e.g., Laxon et al., 2013; Schweiger
et al., 2011) have showed that the PIOMAS sea ice thickness is in reasonable agreement with the observa-
tions, validated by the observations including submarines, moorings, ICESat (Schutz et al., 2005), and
CryoSat‐2 ice thickness. We use the PIOMAS daily sea ice thickness during 2000–2016 to calculate the clima-
tology of seasonal evolution of sea ice thickness and then apply the seasonal cycle to the CryoSat‐2/SMOS
merged ice thickness to approximate ice thickness at the date of the model initialization. We try two
approaches to do the extrapolation of sea ice thickness based on the calculation of the ratio of the ice thick-
ness change between the initial date of predictions and the last available date of CryoSat‐2 and SMOS data.
The first approach is that all grids use the Arctic‐averaged PIOMAS ice thickness to calculate seasonal cycle
(Figure 3a), and the other approach is that each grid uses its PIOMAS ice thickness time series as the seaso-
nal cycle (Figure 3b).

6. Results
6.1. Assimilated Sea Ice Condition

Figure 4 shows the satellite‐based sea ice concentration and ensemble mean of initial ice concentration with-
out and with data assimilation for the JUL17 experiment. Before the data assimilation, the initial ice concen-
tration, which is the average of one‐month model simulation from 15 June to 15 July 15, exhibits quite
smooth spatial distribution in the Arctic Basin with larger concentration in the area covered by the first year
sea ice compared to the observations (Figure 4a vs. Figure 4b). After the data assimilation, the initial ice con-
centration has a spatial pattern in the Arctic Basin that is similar to the observations; that is, some clusters
with the relatively low concentration (65–85%) can be found between the Chukchi, Lincoln, and Laptev Seas
for JUL17 (Figure 4b vs. Figure 4c). The initial ice concentration at Hudson and Baffin Bays is also reduced

Figure 2. The model domain used in the new coupled modeling system for
seasonal Arctic sea ice predictions.
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after the assimilation (Figure 4b vs. Figure 4c). This is also the case for the
AUG17 experiment (Figure 4e vs. Figure 4f).

Figure 5 shows the satellite‐based sea ice thickness and ensemble mean of
initial ice thickness without and with assimilation for the JUL17 experi-
ment. As mentioned above, the most significant bias of the NCEP
CFSv2 is that sea ice is too thick over much of the Arctic basin with much
weaker interannual variability (Saha et al., 2014). It is apparent that the
initial ice thickness generated by the CFSv2 forecast is much thicker in
the Beaufort Gyre compared with the observations (Figure 5a vs.
(Figure 5b). After the assimilation, the thick bias in the Beaufort Gyre is
reduced significantly, and the spatial distribution is more comparable
with the CryoSat‐2/SMOS/PIOMAS blended ice thickness, in which the
thickest ice is located in the Canadian Archipelago and northern
Greenland Sea (Figure 5a vs. Figure 5c). This is also the case for the
AUG17 experiment (Figures 5d–5f)).

6.2. Prediction Experiments

The temporal evolution of the ensemble mean and ensemble spread of the
predicted Arctic sea ice extent for the JUL17 experiment is shown in
Figure 6. The ice extent is calculated as the sum of the area of each grid
cells with ice concentration greater than 15%. Along with the total ice
extent, we also calculate ice extent for the following subregions: (1)
Beaufort and Chukchi Seas (120–180 W, 65–80 N); (2) East Siberian and
Laptev Seas (90–180°E, 65–80 N); (3) Barents, Kara, and Greenland Seas
(30 W to 90°E, 65–80 N); and (4) Canadian Archipelago and Baffin Bay
(30–120 W, 65–80 N). The ensemble mean (thick blue line) has an
~0.4 × 106‐km2 bias at the initial, but the observed ice extent still lies
within the ensemble spread. As a result, the predicted ice extent overesti-

mates the observation for about 1 week. For the rest of July, the ensemble mean of the ice extent is in good
agreement with the observations. For August, our model slightly overestimates the actual ice extent. For
September, the predicted ice extent shows a mixed feature compared to the observations with a delayed
ice re‐freezing in late September. The observed minimum sea ice extent (4.64 × 106 km2) occurred on 13
September 2017, whereas our predicted minimum (4.65× 106 km2) occurred on 24 September 2017. At the
regional scale, the predicted sea ice extent shows reasonable temporal evolution in the Beaufort‐Chukchi
Seas, the Barents‐Kara‐Greenland Seas, and the Baffin Bay‐Canadian Archipelago, but large difference is
identified in the East Siberian‐Laptev Seas, which overestimates the observed ice extent.

Table 2
The Summary of the Prediction Experiments and Details of Assimilation Procedures/Observation Insertion

Experiments with assimilation

Ensemble method SIT data PIOMAS extrapolation SIC uncertainty SIT uncertainty (m)

JUL17 trajectory mean + trajectory perturbation CryoSat‐2/SMOS Arctic‐averaged thickness 0.15 1.5
AUG17 trajectory mean + trajectory perturbation CryoSat‐s2/SMOS Grid‐based thickness 0.15 0.75
JUL18 CFS initial ice states + trajectory perturbation CryoSat‐2/SMOS Grid‐based thickness 0.15 0.75
AUG18 CFS initial ice states + trajectory perturbation CryoSat‐2/SMOS Grid‐based thickness 0.15 0.75
JUL18_P CFS initial ice states + trajectory perturbation PIOMAS None 0.15 0.75
AUG18_P CFS initial ice states + trajectory perturbation PIOMAS None 0.15 0.75

Experiments with observation insertion
Inserted SIC data Inserted SIT data

Exp‐NoAss None None
Exp‐A SSMIS SIC None
Exp‐B SSMIS SIC CryoSat‐2/SMOS/PIOMAS SIT

Note. All experiments use CFS as initial and boundary conditions.

Table 1
The Summary of Physic Options and Details of the New Modeling System

Horizontal spacing 25 km

Horizontal grid points 319 × 449 points
WRF time step 60 s
ROMS time step 600 s
CICE time step 600 s
Coupling frequency 1,800 s
Lateral boundary
conditions

CFSv2 9‐month operational forecasts

WRF version 3.6.1
Cumulus
parameterization

Grell‐Freitas (Grell & Freitas, 2014)

Microphysics
parameterization

Morrison two moment (Morrison
et al., 2009)

Longwave radiation CAM spectral band scheme (Collins
et al., 2004)

Shortwave radiation CAM spectral band scheme (Collins
et al., 2004)

Boundary layer MYNN2 (Nakanishi & Niino, 2006)
Land surface Unified Noah LSM (Chen & Dudhia, 2001)
ROMS version svn 748
Tracer advection scheme MPDATA (Smolarkiewicz, 2006)
Tracer vertical
mixing scheme

GLS (Umlauf & Burchard, 2003)

CICE version 5.1.2
Ice dynamics EVP (Hunke & Dukowicz, 1997)
Ice thermodynamics Bitz and Lipscomb (1999)
Shortwave albedo Delta‐Eddington (Briegleb & Light, 2007)
Melt pond Topographic formulation (Flocco &

Feltham, 2007)
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As the benchmark for our predictions, we also present the climatology prediction (CLIM, based on the data
during 1997–2016) and the damped anomaly persistence prediction (DAMP; Van den Dool, 2006). The
damped anomaly persistence prediction is calculated as follows:

SIEp tð Þ ¼ SIEclim tð Þ þ SIEanom 0ð Þ × A tð Þ × σ tð Þ
σ 0ð Þ

where SIEclim(t) is the corresponding sea ice extent from the 1997–2016 climatology, SIEanom(0) is the ice

Figure 3. (a) The seasonal evolution of Arctic averaged PIOMAS ice thickness for the 2000–2016 climatological mean,
and (b) the spatial distribution of PIOMAS ice thickness ratio between the initial date of prediction and the last
available date of CryoSat‐2 and SMOS data.
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extent anomaly at lag 0, A(t) is the autocorrelation of SIE in the 1997–2016 period, and σ(t) is the standard
deviation at lag t. Compared with the CLIM/DAMP predictions, our 2017 model predictions are much better
than the one based solely on the climatology and show similar temporal evolution compared with the DAMP
predictions before mid‐August. After mid‐August, the DAMP predictions tend to have faster ice melting rate
than our predictions and thus underestimate the seasonal minimum ice extent.

Figure 7 shows the spatial distribution of the observed and the difference between the predicted sea ice con-
centration and the observations for all grid cells that both the predictions and the observations have at least
15% concentration for the JUL17 experiment. The vertical and horizontal lining areas represent difference of
the ice edge location. For the significance test, we used the daily time series of each grid cell to conduct the t
test for the 1:1 regression line based on the predicted values and the observed values (see Piñeiro et al., 2008
for details). The areas marked with cross represent the predicted values that are in good agreement with the
observed values, passing 95% significance level. The predicted ice distribution is very similar to the observa-
tions in July (Figures 7a and 7d)). Although the predicted ice distribution in August and September is
broadly consistent with the observations, the prediction shows slower retreat of sea ice in the Pacific side
of the Arctic Ocean compared with the observations, especially in the Chukchi and East Siberian Seas
(Figures 7b, 7c, 7e, and 7f).

Figure 4. Sea ice concentration of the observation (a, d), initial ensemble‐mean before data assimilation (b, e), and initial ensemble‐mean after data assimilation
(c, f) for JUL17 and AUG17.
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Figure 8 shows the ensemble mean of simulated sea ice thickness of the JUL17 experiment. For July
(Figure 8a), the ice thickness in the northern Beaufort, Chukchi, and East Siberian Seas is ~1–1.8 m thick.
In the subsequent months of prediction (Figures 8b and 8c), a major thinning of the ice occurs in the north-
ern East Siberian Sea from 1.6 m to 0.6 m, whereas the ice thickness in the northern Beaufort and Chukchi
Seas does not decrease significantly, still thicker than 1.2 m. Such spatial evolution of ice thickness contri-
butes to the slow ice retreating along the Pacific side of Arctic Ocean in JUL17, which is also in part asso-
ciated with the initial sea ice thickness. That is, the sea ice thickness assimilation (Figure 5c) generates
thinner ice compared to that of the CFSv2 in the Pacific side of Arctic Ocean, especially in the Chukchi
Sea, but still thicker relative to the satellite observations.

In the JUL17 experiment, we employ the largest uncertainty of CryoSat‐2 ice thickness (1.5 m) as the
observational uncertainty input for PDAF. Here we examine the sensitivity of the spatial distribution of
assimilated sea ice thickness to (1) different approaches to extrapolate ice thickness based on the calculated
PIOMAS seasonal cycle and (2) different observational uncertainties in ice thickness (see Table 2 for details).
Figure 9 shows the resulting initial ice thickness for the first ensemble member of the JUL17 experiment.
Regardless of different ways to extrapolate ice thickness using the PIOMAS seasonal cycle (Arctic
averaged vs. grid based), the use of the maximum uncertainty (1.5 m) of the CryoSat‐2 ice thickness

Figure 5. Same as Figure 4 but for sea ice thickness.
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(Figures 9a and 9b) generates sea ice that is too thick from the Chukchi Sea to the East Siberian Sea (~2 m).
By reducing the uncertainty from 1.5 to 0.75 m (close to the uncertainty of SMOS ice thickness), only small
area of the Chukchi Sea still has ice thicker than ~1.5 m. Most of the Chukchi and East Siberian Seas show

Figure 6. Top panel: Time series of Arctic sea ice extent for the observations (black line) and the ensemble mean and
ensemble spread of JUL17 (blue line and shaded area) and AUG17 (red line and shaded area). Dashed and dotted
lines are the climatology and the damped anomaly persistence predictions. Bottom panel: Time series of the observed
(black line) and the ensemble mean and ensemble spread of regional sea ice extents for JUL17 (blue line and shaded
area) and AUG17 (red line and shaded area). (a) Beaufort‐Chukchi Seas, (b) East Siberian‐Laptev Seas, (c)
Barents‐Kara‐Greenland Seas, and (d) Baffin Bay‐Canadian Archipelago.
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much thinner ice compared to those employing 1.5‐m uncertainty (Figures 9c and 9d). Thus, we apply the
reduced uncertainty of the observed ice thickness and the grid‐based PIOMAS seasonal cycle for the
AUG17, JUL18, and AUG18 predictions (see Table 2). For example, as demonstrated in Figure 4, the
improvement is more clearly visible for the initial ice concentration for the AUG17 experiment after the

Figure 7. Monthly mean of sea ice concentration for (a) July, (b) August, and (c) September of the NSIDC observations and the difference between the predictions
and the observations for (d) July, (e) August, (f) September of JUL17, (g) August, and (h) September of AUG17. Vertical/horizontal line areas represent the
difference of ice edge location (15% concentration). The dotted areas represent the areas that pass the t test (p < 0.05) for 1:1 regression line (Piñeiro et al., 2008).
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data assimilation. In particular, the initial sea ice concentration in the area extending from the Beaufort Sea,
through the central Arctic, to north of central Siberia is in very good agreement with the observations
(Figure 4e vs. Figure 4f), even though the ensemble mean of sea ice extent of AUG17 (Figure 6 thick red
line) has an initial sea ice extent bias of ~0.7 × 106 km2. The spatial distribution of the initial sea ice
thickness resembles the CyroSat‐2/SMOS/PIOMAS blended ice thickness (Figure 5e vs. Figure 5f).
Because of the bias at the initial step, the predicted sea ice extent for August overestimates the observed
ice extent nearly 2 weeks and then tracks the observation closely. The delayed freezing also occurs near
the end of September, which is similar to that of JUL17. As for the predicted spatial pattern of sea ice
concentration of AUG17, there is reduced ice cover in the Chukchi and East Siberian Seas in August and
September, which is better than those of JUL17 (Figure 7g).

Figure 8. Monthly mean of sea ice thickness for (a) July, (b) August, and (c) September of JUL17.

Figure 9. Initial sea ice thickness with (a) 1.50‐m thickness uncertainty and Arctic‐averaged PIOMAS thickness ratio, (b) 1.50‐m thickness uncertainty and
grid‐based PIOMAS thickness ratio, (c) 0.75‐m thickness uncertainty and Arctic‐averaged PIOMAS thickness ratio, and (d) 0.75‐m thickness uncertainty and
grid‐based PIOMAS thickness ratio.

10.1029/2019MS001938Journal of Advances in Modeling Earth Systems

YANG ET AL. 14 of 25



Although assimilating satellite sea ice observations improve the accuracy of initial ice concentration and
thickness (spatial pattern) for the 2017 predictions substantially, the initial total ice extent shows a positive
bias, especially for AUG17 (Figure 6, red line). This is partly due to the initial ensemble generating proce-
dure, in which the ensemble perturbations are overlaid on the mean state of sea ice trajectories. The mean
state of trajectories is the average of 1‐month model simulation using the CFSv2 9‐month operational

Figure 10. Top panel: Same as Figure 6 but for 2018 predictions. Stars represent the initial sea ice extent with the same
ensemble generating method as 2017 predictions. Bottom panel: Same as Figure 6 but for 2018 predictions.
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forecast as initial and lateral boundary conditions (15 June to 15 July for JUL17 and 15 July to 15 August for
AUG17). As mentioned above, sea ice simulated by the CFSv2 is too thick over most of the Arctic basin,
which leads to slow ice reduction and higher ice extent during the melting season. Assimilating sea ice
observations based on initial ensembles with higher mean state results in the aforementioned bias in the
initial total ice extent. To address this issue, we modify the ensemble generating procedure by replacing
the mean state of sea ice trajectories calculated from 1‐month model integration with the CFSv2 initial ice
concentration and thickness for the initial date of 2018 predictions (JUL18 and AUG18). As shown in
Figure 10, the initial sea ice extent with modified ensemble generating method has comparable bias for
JUL18 (very small compared to the observation), but much smaller bias for AUG18, compared to the
original method (Figure 10, stars).

Figure 10 shows the temporal evolution of the ensemble mean and ensemble spread of the Arctic sea ice
extent of JUL18 and AUG18 as well as the CLIM and DAMP predictions. For JUL18, our model captures
the observed evolution but slightly underestimates the observed ice extent throughout the prediction period.
The observed seasonal minimum extent for 2018 is 4.63 × 106 km2 on 21 September (Figure 10 black line),
whereas our predicted minimum is 4.34 (4.78) × 106 km2 on 26 September (21) for JUL18 (AUG18). AUG18
(Figure 10 red line) has an overestimation at the initial (~0.7 × 106 km2), although the bias is reduced as dis-
cussed above. As a result, the prediction overestimates the actual ice extent for about 1 week. For the rest of
the prediction period, the ensemble mean of the ice extent agrees well with the observation. In contrast to

Figure 11. (a–d) The predicted sea ice extent of our system (solid line: with assimilation; dashed line: without
assimilation) and CFSv2 predictions and their RMSE with respect to the observations for 2018.
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2017, our 2018 model predictions are much better than both the climatology and DAMP predictions. The
DAMP predictions of 2018 clearly overestimate (underestimate) the observed sea ice extent for the July
(August) prediction and has a larger bias in seasonal minimum of ice extent than our predictions. With
the modified ensemble generating procedure, the overestimation of regional ice extent in the East
Siberian‐Laptev Seas is reduced for JUL18 compared with JUL17 but there is still an overestimation for
AUG18.

The modification of the generating procedure for the initial sea ice of 2018 predictions (JUL18 and
AUG18) allows us to directly compare our predictions with the CFSv2 predictions. Figure 11 shows the
temporal evolution of the predicted sea ice extent of CFSv2 in conjunction with our predictions. Our pre-
dictions without data assimilation are also shown for reference (Figure 11 dashed lines). For JUL18, both
predictions give reasonable date of the summer minimum around 24 September (Figure 11a). Our sum-
mer extent minimum is slightly smaller than the NSIDC observation. However, a large overestimation
of 3.83 × 106 km2 (a relative overestimation of 83%) is found for the CFSv2 prediction due to slow ice
melting. We also calculate the root‐mean‐square error (RMSE) of sea ice extent, which is a measure of
prediction errors. As shown in Figure 11, both predictions have comparable and small RMSE at the initial
as well as the first week of integration. After that, our prediction shows a similar level of RMSE as the
first week of integration. However, the RMSE of CFSv2 increases quickly in July, reaching about
3 × 106 km2 in early August, and then gradually increases to about 3.7 × 106 km2 in late September.
This is also the case for AUG18.

Figure 12. Same as Figure 11 but for regional sea ice extents and their RMSE over the Northern Sea Route regions.
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The Arctic shipping routes have become increasingly navigable in recent
years because of the rapid retreat of sea ice (e.g., Melia et al., 2016; Smith &
Stephenson, 2013). The navigability of the ice‐covered Arctic Ocean is
mainly determined by the real‐time ice conditions, including the ice con-
centration and thickness, and the engineering capabilities of a particular
vessel class (Smith & Stephenson, 2013). The temporal evolution of the
predicted sea ice extent in the Northern Sea Route (NSR, here the NSR
region is defined as the area of 0–180, 65 N–80 N) by our modeling system
and CFSv2 is shown in Figure 12. For JUL18, our predicted NSR sea ice
extent agrees well the observations and the RMSE stays less than
~0.2 × 106 km2 during the entire prediction period, whereas the CFSv2
prediction still shows a large overestimation in the NSR region
(Figures 12a and 12b). However, for AUG18, our model overestimates
the NSR sea ice extent (~0.4 × 106 km2), although our prediction still
has better skill in the NSR regions than CFSv2 prediction (Figures 12c
and 12d). Although the limitation of the CFSv2 sea ice prediction that is
largely due to its assimilation system does not implement sea ice thickness
assimilation because of limited availability of real‐time thickness observa-
tions (Saha et al., 2010), the CFSv2 has irreplaceable value since it pro-
vides real‐time operational forecasts that can be used as the initial and
boundary conditions for regional forecast modeling systems.

6.3. Initialization Sensitivity Experiments

As demonstrated above, assimilating satellite‐based sea ice concentration and thickness can lead to better
estimation of initial ice mass fields and increased predictive skill. The assimilation procedures described in
section 3 reduce the biases inherited from CFSv2. The bias correction can be also achieved by the direct
insertion of observations. We perform additional numerical experiments (Table 2) using our modeling sys-
tem including (1) without any assimilation of satellite sea ice data (Exp‐NoAss), (2) direct insertion of the
SSMIS sea ice concentration (Exp‐A), and (3) direct insertion of SSMIS sea ice concentration and
CryoSat‐2/SMOS/PIOMAS blended sea ice thickness (Exp‐B). All missing data in the observed/blended data
are replaced with the original CFSv2 data. To maintain the physical consistency between sea ice concentra-
tion and thickness, data adjustments were conducted, that is, the ice concentration and thickness in a grid
cell are set to 0 if either the ice concentration or ice thickness is 0. Figure 13 shows time series of sea ice

Figure 13. Time series of Arctic sea ice extent for the observations (black
line), the original JUL18 prediction (pink line), the prediction without
data assimilation (blue line), the insertion of SSMIS sea ice concentration
(yellow line), and the insertion of SSMIS and the blended ice thickness (red
line).

Figure 14. (a) The time series of Arctic sea ice extent for the observations (black line), the JUL18 (blue solid line), the
AUG18 (red solid line), and the experiments only assimilating PIOMAS ice thickness (JUL_P, AUG_P; dashed line).
(b) The RMSE of the JUL_P and the AUG_P.
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extent from additional numerical experiments along with the JUL18 prediction. The prediction without data
assimilation (blue line) significantly overestimates sea ice cover than the observations, although it is less
excessive than that of the CFSv2 prediction (Figure 11). Directly inserting SSMIS sea ice concentration
(yellow line) produces adjusted ice extent closer to the observation compared to that of Exp‐NoAss, but

Figure 15. ERA‐interim monthly mean of near‐surface air temperature for (a) July, (b) August, and (c) September and the difference between predictions and
ERA‐interim for (d) July, (e) August, (f) September of JUL17, (g) August, and (h) September of AUG17. The dotted areas represent the areas where pass the t
test (p < 0.05) for 1:1 regression line.
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the improvement gradually diminishes after a few weeks' integration, still leading to a significant
overestimation of the observed ice extent. This implies that only inserting observed sea ice concentration
cannot eliminate the biases in the ice thickness inherited from the CFSv2. By contrast, by direct inserting
SSMIS ice concentration and CryoSat‐2/SMOS/PIOMAS blended sea ice thickness, the Exp‐B (red line)

Figure 16. NOAA OI monthly mean of sea surface temperature for (a) July, (b) August, and (c) September and the difference between predictions and NOAA OI
SST for (d) July average, (e) August, (f) September of JUL17, (g) August, and (h) September of AUG17. The dotted areas represent the areas where pass the t test
(p < 0.05) for 1:1 regression line.
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shows smaller initial ice extent than those of the Exp‐A and the observations and underestimates the
observed ice extent throughout the prediction period. Note that its initial underestimation is related to the
adjustment that needs to maintain the model physical consistency. Overall, our prediction that assimilates
satellite sea ice concentration and thickness and takes account of their covariance and uncertainty leads
to improved Arctic sea ice prediction.

As demonstrated by Collow et al. (2015), using PIOMAS ice thickness to initialize NCEP CFS can lead to
increased interannual predictive skill. The JUL18_P and the AUG18_P experiments (Table 2) are designed
to investigate the difference between assimilating Cyrosat‐2 and SMOS ice thickness and assimilating
PIOMAS ice thickness in our modeling system. Figure 14 shows the temporal evolution and the ensemble
mean and ensemble spread of the Arctic sea ice extent and the RMSE of JUL18_P and AUG18_P in conjunc-
tion with JUL18 and AUG18. As shown in Figure 14, the experiments only assimilating PIOMAS data pro-
duce larger sea ice extents compared to both the experiments assimilating the CrySat‐2/SMOS/PIOMAS
blended ice thickness and the observations. Comparing the RMSE of these experiments suggests that all
experiments have comparable and small RMSE at the initial as well as during a few weeks' integration.
After that, the experiments only assimilating PIOMAS ice thickness have larger RMSE than those assimilat-
ing the CrySat‐2 and SMOS ice thickness, particularly for the experiment initialized on 1 August
(Figure 14b). This suggests that assimilating satellite‐based sea ice thickness might be beneficial for Arctic
sea ice prediction.

7. Conclusions and Discussions

In this study, a new regional coupled model that couples the Los Alamos Sea Ice Model (CICE) with the
WRF model and the ROMS model under the framework of the COAWST system has been developed for
Arctic sea ice prediction. Moreover, we implement the LESTKF in the new coupled model to assimilate
SSMIS near‐real‐time sea ice concentration and CryoSat‐2/SMOSmerged ice thickness to generate improved
model initial conditions. Two forecasting experiments starting from 1 July and 1 August to the end of
September are performed for 2017 and 2018, respectively. We examine the impacts of different approaches
to extrapolate ice thickness to the starting date of the prediction, different observation errors in ice thickness,
and different procedures to generate the ensemble initial state.

The results of 2017 predictions show that the new modeling system configured for the Arctic combined with
the assimilation of satellite sea ice data can predict reasonable evolution of the total ice extent compared
with the observations, though the predictions exhibit a delayed ice‐refreezing timing. Spatially, the JUL17
shows slower ice retreating along the Pacific side of the Arctic Ocean, especially at the Beaufort and
Chukchi Seas, which is partly attributed to the initial ice thickness distribution. Sensitivity experiments sug-
gest that the use of appropriate uncertainty in the observed ice thickness can lead to improved spatial distri-
bution of assimilated initial ice thickness. It is demonstrated that our newmodeling system initialized by the
output of CFSv2 seasonal forecasts with our data assimilation procedures can significantly reduce the sea ice
prediction errors compared with the prediction conducted by the CFSv2.

Other important sea ice variables that influence surface energy fluxes and ocean‐atmosphere interaction
may also need for better initial sea ice conditions, that is, snow depth and melt pond fraction that changes
surface albedo property, radiation transfer into the ice layers, and sea ice motion that influences the ice
dynamics. The initial states of the atmospheric model and the ocean model also play a crucial role in sea
ice predictions. Recent studies showed that assimilating additional atmospheric observations (i.e., radio-
sonde) have significant influences on predicting atmospheric variation and thus lead to improved weather
and sea ice prediction (Inoue et al., 2013, 2015). Bushuk et al. (2017) showed that the initialization of the
ocean subsurface provides significant skill for regional winter sea ice extent at a seasonal timescale.
Further experiments will be performed to understand the impacts of data assimilation of other variables with
our new modeling system.

In the fully coupled predictive model, sea ice strongly interacts with the atmosphere above and the ocean
below. Thus, biases in the atmosphere and the ocean may potentially degrade the predictive capability for
sea ice. Here we conduct a preliminary evaluation of the simulation of the atmosphere and ocean, focusing
on near‐surface air temperature and SST, which play important roles in determining the melting of sea ice
during the prediction period.

10.1029/2019MS001938Journal of Advances in Modeling Earth Systems

YANG ET AL. 21 of 25



Figure 15 shows the spatial distribution of the ERA‐interim 2‐m air temperature (T2) and predicted anoma-
lies (ensemble mean minuses ERA‐interim) for July, August, and September in 2017. For JUL17, compared
to the ERA‐interim, the predicted temperature in July has small cold (warm) biases over the Arctic Ocean
and northern Pacific and Atlantic (Canada) (Figures 15a and 15d). Moderate‐to‐large cold biases (~4–6°)
are found over central and western Siberia. For August (Figure 15e), the cold biases over the northern
Pacific and Atlantic are increased relatively, and large cold biases (~6–10°) covers almost entire Siberia
and eastern Europe. In contrast to JUL17, AUG17 shows a similar bias pattern with relatively enhanced
magnitude for cold biases (Figure 15g). However, the cold biases over the land surface become smaller in
September (Figure 15h). Although the significant test for near‐air surface temperature suggests that our pre-
dictions show a good agreement with the observations over large part of land surface, efforts are needed to
reduce the large cold biases over the land surface, particularly predictions with longer lead times. Recently,
Kuo et al. (2018) suggested that surface emissivity is important for reducing high‐latitude temperature biases
in the Community Earth System Model.

Figure 16 shows the spatial distribution of the NOAA optimum interpolation sea surface temperature and
predicted anomalies (ensemble mean minuses NOAA) for July, August, and September in 2017. In general,
both JUL17 and AUG17 show cold biases in the North Pacific and Atlantic. For JUL17, the cold bias is
increased from July to August compared to optimum interpolation sea surface temperature, especially in
the large portion of the North Pacific, Greenland Sea, Labrador Sea, and Sea of Okhotsk in August (~3–5°,
Figures 16d–16f). Such bias pattern maintains in September. In contrast to JUL17, AUG17 shows smaller
cold biases over the ocean, but the cold biases still enlarge relatively over time, especially in the
Greenland Sea and Labrador Sea (Figures 16g and 16h). Zhu et al. (2015) discussed reducing SST bias in
CFSv2 prediction with the ocean initialization scheme. They suggested that using a simple SST‐nudging
scheme is an effective way to enhance predictive skill on SST for most of ocean basins. The significant test
suggests that sea ice edge zones have good consistency between the predicted values and the observed values.

We also find that the cold biases in both predicted T2 and SST in our new modeling system are partly due to
the underestimation of the downward shortwave radiation at the surface compared to the ERA‐interim (not
shown). This underestimation of downward shortwave radiation is associated with the simulated cloudiness
by the Grell‐Freitas cumulus scheme and Morrison two‐moment microphysics, which tend to produce too
much cloud that greatly reduces the downward shortwave radiative flux. Further investigation of simulated
radiation for our modeling system will be conducted in future research.

Although this new modeling system has shown great potential for seasonal Arctic sea ice prediction, more
experiments with this modeling system for seasonal Arctic sea ice and climate prediction will be conducted
to examine the robustness of the modeling system and reduce the biases in three components of the model.
For instance, physical processes which are missing or poorly represented in the new modeling system need
to be improved, and a more sophisticated data assimilation involving more state variables requires
further investigation.
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